# Derivatives for multivariate functions

Philipp Warode

October 1, 2019

## Multivariate functions

 A function depending on more than one variable is called multivariate function.

Example:

 $f(x,y) := x^2 + 2xy + 1$ 



Let 
$$f(x) = f(x_1, x_2, ..., x_n)$$
 be a multivariate function

The partial derivative in the  $x_i$  direction in  $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$  is

$$\frac{\partial}{\partial x_i} f(x^{(0)}) := \lim_{x \to x_i^{(0)}} \frac{f(x_1^{(0)}, \dots, x_{i-1}^{(0)}, x, x_{i+1}^{(0)}, \dots, x_n^{(0)}) - f(x^{(0)})}{x - x_i^{(0)}}$$

Let 
$$f(x) = f(x_1, x_2, ..., x_n)$$
 be a multivariate function

The partial derivative in the  $x_i$  direction in  $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$  is

$$\frac{\partial}{\partial x_i} f(x^{(0)}) := \lim_{x \to x_i^{(0)}} \frac{f(x_1^{(0)}, \dots, x_{i-1}^{(0)}, x, x_{i+1}^{(0)}, \dots, x_n^{(0)}) - f(x^{(0)})}{x - x_i^{(0)}}$$

The partial derivative is just the derivative wrt. x<sub>i</sub> where the other values are treated as constants.

Function f



 $f(x,y) = x^2 + 2xy + 1$ 

Function *f* 



 $f(x,y) = x^2 + 2xy + 1$ 

Function *f* with fixed  $y_0 = -1$ 



 $f_{y=-1}(x) = x^2 - 2x + 1$ 

Function *f* 



 $f(x,y) = x^2 + 2xy + 1$ 

Function *f* with fixed  $y_0 = -1$ 



Function *f* 



$$f(x, y) = x^{2} + 2xy + 1$$
$$\frac{\partial}{\partial x}f(x, y) = 2x + 2y$$

Function *f* with fixed  $y_0 = -1$ 



■ The partial derivative ∂∂x<sub>i</sub> f(x) again depends on the whole vector x = (x<sub>1</sub>,..., x<sub>n</sub>).

The vector of all partial derivatives

$$\nabla f(\mathbf{x}) := \begin{pmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} f(\mathbf{x}) \end{pmatrix}$$

is called the **gradient** of f.

The gradient is a vector that points in the direction of steepest increase

# Extrema of multivariate functions

A point  $x^{(0)} \in \mathbb{R}^n$  is a **local maximum** of  $f : \mathbb{R}^n \to \mathbb{R}$  if there is a  $\epsilon > 0$  with

$$f(x_0) \ge f(x)$$
 for all  $x$  with  $||x - x_0|| < \epsilon$ 

# Extrema of multivariate functions

A point  $x^{(0)} \in \mathbb{R}^n$  is a **local maximum** of  $f : \mathbb{R}^n \to \mathbb{R}$  if there is a  $\epsilon > 0$  with

$$f(x_0) \ge f(x)$$
 for all  $x$  with  $||x - x_0|| < \epsilon$ 



# Extrema of multivariate functions

A point  $x^{(0)} \in \mathbb{R}^n$  is a local minimum of  $f : \mathbb{R}^n \to \mathbb{R}$  if there is a  $\epsilon > 0$  with

$$f(x_0) \leq f(x)$$
 for all  $x$  with  $||x - x_0|| < \epsilon$ 



# Theorem

If  $x^{(0)}$  is a extreme point, then

$$\nabla f(\mathbf{x}^{(0)}) := \begin{pmatrix} \frac{\partial}{\partial \mathbf{x}_1} f(\mathbf{x}^{(0)}) \\ \vdots \\ \frac{\partial}{\partial \mathbf{x}_n} f(\mathbf{x}^{(0)}) \end{pmatrix} = \mathbf{0}.$$

## Theorem

If  $x^{(0)}$  is a extreme point, then

$$\nabla f(\mathbf{x}^{(0)}) := \begin{pmatrix} \frac{\partial}{\partial \mathbf{x}_1} f(\mathbf{x}^{(0)}) \\ \vdots \\ \frac{\partial}{\partial \mathbf{x}_n} f(\mathbf{x}^{(0)}) \end{pmatrix} = \mathbf{0}.$$

 $\nabla f(x) = 0$  is only a **necessary condition** for an extreme point.

# Definition

#### The symmetric matrix

$$H^{f}(\mathbf{x}^{(0)}) := \begin{pmatrix} \frac{\partial^{2}}{\partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f(\mathbf{x}^{(0)}) \\ \frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial^{2} x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f(\mathbf{x}^{(0)}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial^{2} x_{n}} f(\mathbf{x}^{(0)}) \end{pmatrix}$$

is called **Hessian matrix** of f at  $x_0$ .

# Theorem

A function f has a local maximum/minimum at  $x_0$  if

• 
$$\nabla f(\mathbf{x}^{(0)}) = 0$$
 and

• 
$$H^{f}(x^{(0)})$$
 is positive/negative definite

# Definition

#### The symmetric matrix

$$H^{f}(\mathbf{x}^{(0)}) := \begin{pmatrix} \frac{\partial^{2}}{\partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f(\mathbf{x}^{(0)}) \\ \frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial^{2} x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f(\mathbf{x}^{(0)}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f(\mathbf{x}^{(0)}) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f(\mathbf{x}^{(0)}) & \cdots & \frac{\partial^{2}}{\partial^{2} x_{n}} f(\mathbf{x}^{(0)}) \end{pmatrix}$$

is called **Hessian matrix** of f at  $x_0$ .

### Theorem

A function f has a local maximum/minimum at  $x_0$  if

- $\nabla f(x^{(0)}) = 0$  and
- $H^{f}(\mathbf{x}^{(0)})$  is positive/negative definite  $\Leftrightarrow All$  eigenvalues of  $H^{f}(\mathbf{x}^{(0)})$  are positive/negative

Criteria for local extrema for n = 2

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \text{ has a local maximum/minimum at } (x^{(0)}, y^{(0)}) \text{ if}$$

$$= \frac{\partial}{\partial x} f(x^{(0)}, y^{(0)}) = \frac{\partial}{\partial y} f(x^{(0)}, y^{(0)}) = 0 \quad \text{(Necessary condition)}$$

$$= \det \left( H^f(x^{(0)}, y^{(0)}) \right) > 0 \text{ and}$$

$$= \frac{\partial^2}{\partial^2 x} f(x^{(0)}, y^{(0)}) < 0 \text{ or } \quad \text{(Sufficient condition for maximum)}$$

$$= \frac{\partial^2}{\partial^2 x} f(x^{(0)}, y^{(0)}) > 0 \quad \text{(Sufficient condition for minimum)}$$

■ The determinant of *H<sup>f</sup>* can be computed as

$$\det\left(H^{f}(x^{(0)}, y^{(0)})\right) = \frac{\partial^{2}}{\partial^{2}x} f(x^{(0)}, y^{(0)}) \cdot \frac{\partial^{2}}{\partial^{2}y} f(x^{(0)}, y^{(0)}) - \left(\frac{\partial^{2}}{\partial x \partial y} f(x^{(0)}, y^{(0)})\right)^{2}$$