Derivatives
 for multivariate functions

Philipp Warode

October 1, 2019

- A function depending on more than one variable is called multivariate function.

Example:

$$
f(x, y):=x^{2}+2 x y+1
$$

Partial derivatives

$■$ Let $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a multivariate function

- The partial derivative in the x_{i} direction in

$$
\begin{aligned}
& x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right) \text { is } \\
& \frac{\partial}{\partial x_{i}} f\left(x^{(0)}\right):=\lim _{x \rightarrow x_{i}^{(0)}} \frac{f\left(x_{1}^{(0)}, \ldots, x_{i-1}^{(0)}, x, x_{i+1}^{(0)}, \ldots, x_{n}^{(0)}\right)-f\left(x^{(0)}\right)}{x-x_{i}^{(0)}}
\end{aligned}
$$

$■$ Let $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a multivariate function

- The partial derivative in the x_{i} direction in

$$
\begin{aligned}
& x^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right) \text { is } \\
& \frac{\partial}{\partial x_{i}} f\left(x^{(0)}\right):=\lim _{x \rightarrow x_{i}^{(0)}} \frac{f\left(x_{1}^{(0)}, \ldots, x_{i-1}^{(0)}, x, x_{i+1}^{(0)}, \ldots, x_{n}^{(0)}\right)-f\left(x^{(0)}\right)}{x-x_{i}^{(0)}}
\end{aligned}
$$

- The partial derivative is just the derivative wrt. x_{i} where the other values are treated as constants.

Partial derivatives

Function f

Partial derivatives

Function f

$f(x, y)=x^{2}+2 x y+1$

Function f with fixed $y_{0}=-1$
$f_{y=-1}(x)$

$f_{y=-1}(x)=x^{2}-2 x+1$

Partial derivatives

Function f

$f(x, y)=x^{2}+2 x y+1$

Function f with fixed $y_{0}=-1$
$f_{y=-1}(x)$

$f_{y=-1}(x)=x^{2}-2 x+1$
$f_{y=0}^{\prime}(x)=2 x-2$

Partial derivatives

Function f

$$
f(x, y)=x^{2}+2 x y+1
$$

$$
\frac{\partial}{\partial x} f(x, y)=2 x+2 y
$$

Function f with fixed $y_{0}=-1$
$f_{y=-1}(x)$

$f_{y=-1}(x)=x^{2}-2 x+1$
$f_{y=0}^{\prime}(x)=2 x-2$

- The partial derivative $\frac{\partial}{\partial x_{i}} f(x)$ again depends on the whole vector $x=\left(x_{1}, \ldots, x_{n}\right)$.
- The vector of all partial derivatives

$$
\nabla f(x):=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} f(x) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f(x)
\end{array}\right)
$$

is called the gradient of f.

- The gradient is a vector that points in the direction of steepest increase

Extrema of multivariate functions

A point $x^{(0)} \in \mathbb{R}^{n}$ is a local maximum of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ if there is a $\epsilon>0$ with

$$
f\left(x_{0}\right) \geq f(x) \text { for all } x \text { with }\left\|x-x_{0}\right\|<\epsilon
$$

Extrema of multivariate functions

A point $x^{(0)} \in \mathbb{R}^{n}$ is a local maximum of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ if there is a $\epsilon>0$ with

$$
f\left(x_{0}\right) \geq f(x) \text { for all } x \text { with }\left\|x-x_{0}\right\|<\epsilon
$$

Extrema of multivariate functions

A point $x^{(0)} \in \mathbb{R}^{n}$ is a local minimum of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ if there is a $\epsilon>0$ with

$$
f\left(x_{0}\right) \leq f(x) \text { for all } x \text { with }\left\|x-x_{0}\right\|<\epsilon
$$

Criteria for local extrema

Theorem

If $x^{(0)}$ is a extreme point, then

$$
\nabla f\left(x^{(0)}\right):=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} f\left(x^{(0)}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f\left(x^{(0)}\right)
\end{array}\right)=\mathbf{0} .
$$

Criteria for local extrema

Theorem

If $x^{(0)}$ is a extreme point, then

$$
\nabla f\left(x^{(0)}\right):=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} f\left(x^{(0)}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}} f\left(x^{(0)}\right)
\end{array}\right)=\mathbf{0} .
$$

$\nabla f(x)=0$ is only a necessary condition for an extreme point.

Criteria for local extrema

Definition

The symmetric matrix

$$
H^{f}\left(x^{(0)}\right):=\left(\begin{array}{cccc}
\frac{\partial^{2}}{\partial^{2} x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial x_{1} \partial_{2} x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f\left(x^{(0)}\right) \\
\frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial^{2} x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f\left(x^{(0)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial^{2} x_{n}} f\left(x^{(0)}\right)
\end{array}\right)
$$

is called Hessian matrix of f at x_{0}.

Theorem

A function f has a local maximum/minimum at x_{0} if

- $\nabla f\left(x^{(0)}\right)=0$ and
- $H^{f}\left(x^{(0)}\right)$ is positive/negative definite

Criteria for local extrema

Definition

The symmetric matrix

$$
H^{f}\left(x^{(0)}\right):=\left(\begin{array}{cccc}
\frac{\partial^{2}}{\partial^{2} x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial x^{2} \partial x_{n}} f\left(x^{(0)}\right) \\
\frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial^{2} x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f\left(x^{(0)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f\left(x^{(0)}\right) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f\left(x^{(0)}\right) & \cdots & \frac{\partial^{2}}{\partial^{2} x_{n}} f\left(x^{(0)}\right)
\end{array}\right)
$$

is called Hessian matrix of f at x_{0}.

Theorem

A function f has a local maximum/minimum at x_{0} if

- $\nabla f\left(x^{(0)}\right)=0$ and
- $H^{f}\left(x^{(0)}\right)$ is positive/negative definite
\Leftrightarrow All eigenvalues of $H^{f}\left(x^{(0)}\right)$ are positive/negative

Criteria for local extrema for $n=2$
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has a local maximum/minimum at $\left(x^{(0)}, y^{(0)}\right)$ if

- $\frac{\partial}{\partial x} f\left(x^{(0)}, y^{(0)}\right)=\frac{\partial}{\partial y} f\left(x^{(0)}, y^{(0)}\right)=0 \quad$ (Necessary condition)
$\square \operatorname{det}\left(H^{f}\left(x^{(0)}, y^{(0)}\right)\right)>0$ and
- $\frac{\partial^{2}}{\partial^{2} x} f\left(x^{(0)}, y^{(0)}\right)<0$ or (Sufficient condition for maximum)
- $\frac{\partial^{2}}{\partial^{2} x} f\left(x^{(0)}, y^{(0)}\right)>0 \quad$ (Sufficient condition for minimum)
- The determinant of H^{f} can be computed as

$$
\begin{aligned}
\operatorname{det}\left(H^{f}\left(x^{(0)}, y^{(0)}\right)\right)= & \frac{\partial^{2}}{\partial^{2} x} f\left(x^{(0)}, y^{(0)}\right) \cdot \frac{\partial^{2}}{\partial^{2} y} f\left(x^{(0)}, y^{(0)}\right) \\
& -\left(\frac{\partial^{2}}{\partial x \partial y} f\left(x^{(0)}, y^{(0)}\right)\right)^{2}
\end{aligned}
$$

